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Randomly changing system

A system starts from state A.
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Randomly changing system

It can change to state B or C randomly (with prob. 0.4 and 0.6).
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Randomly changing system

From state B, it can go to A, C or D randomly.
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Randomly changing system

From C, it can only go to E.
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Randomly changing system

From D, it may go to E or back to D.
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Randomly changing system

This is a Markov chain.
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A possible realization
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A possible realization: A, B, D, D, E, D, E, B, C, E, B, A, C . . .

Stochastics Illés Horváth Markov Chains



Markov chain

A Markov chain is a system that can randomly change its state.

The probabilities with which it chooses the next state only depend
on the current state, not what has happened before. This is known
as the Markov property.

The Markov property is a sort of memoryless property: the future
behaviour of the Markov chain only depends on the current state,
not the past.

To de�ne a Markov chain, we need the following information:

list of states (e.g. A, B, C, D, E),

initial state, and

either a directed graph with probabilities on the edges (as
before), or a transition probability matrix P .
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Transition probability matrix

Element (i , j) of the transition probability matrix P is the
probability that the Markov chain will go (transition) to state j
next, assuming it is currently in state i .
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A B C D E

A 0 0.4 0.6 0 0
B 0.1 0 0.2 0.7 0
C 0 0 0 0 1
D 0 0 0 0.5 0.5
E 0 0.6 0 0.4 0
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Initial state vector

The initial state can also be given in vector form, e.g. if the initial
state is A, then the initial vector is

v0 =
(
1 0 0 0 0

)
.

With this notation, it is also possible to have a random initial
vector, e.g.

v0 =
(
1/2 0 1/2 0 0

)
.

means that the Markov chain starts from state A with probability
1/2 or state C with probability 1/2.

The elements of v0 are nonnegative and their sum is 1.
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Stochastic matrix

Properties of the transition probability matrix P :

Its elements are nonnegative:

pij ≥ 0 ∀i , j .

Each row of P has a sum equal to 1:∑
i

pij = 1.

Any square matrix satisfying the above properties is a valid
probability transition matrix. A square matrix satisfying the above
properties is also known as a stochastic matrix.
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State probabilities

Assume the Markov chain starts from state A. Where can it be
after 1 step? Where can it be after 2 steps?
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State probabilities

After 1 step, the state is random: it can be either B with
probability 0.4 or C with probability 0.6, so the state probability
vector after 1 step is

v1 =
(
0 0.4 0.6 0 0

)
.

In 2 steps, the Markov chain can go:

A→B→A with probability 0.4 · 0.1, or
A→B→C with probability 0.4 · 0.2, or
A→B→D with probability 0.4 · 0.7, or
A→C→E with probability 0.6 · 1.

So
v2 =

(
0.04 0 0.08 0.28 0.60

)
.
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State probabilities

How can we compute vn, the state probability vector in general?

Lemma

vn = v0 · Pn

Proof (sketch). Apply induction on n; the vector-matrix product
vn−1 · P computes the probability of being in each state after n
steps by applying total probability according to the state after n− 1
steps.
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State probabilities

For example, from the initial vector

v0 =
(
1 0 0 0 0

)
and transition probability matrix

P =


0 0.4 0.6 0 0
0.1 0 0.2 0.7 0
0 0 0 0 1
0 0 0 0.5 0.5
0 0.6 0 0.4 0


we have

v1 = v0 · P =
(
0 0.4 0.6 0 0

)
.

and

v2 = v1 · P = v0 · P2 =
(
0.04 0 0.08 0.28 0.60

)
.
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State probabilities 
0 0.4 0.6 0 0
0.1 0 0.2 0.7 0
0 0 0 0 1
0 0 0 0.5 0.5
0 0.6 0 0.4 0


(
1 0 0 0 0

) (
0 0.4 0.6 0 0

)
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Communicating classes

If for two states, the Markov chain can get from the �rst state to
the second (in a �nite number of steps with positive probability),
and can also get from the second state to the �rst state (in a �nite
number of steps with positive probability), then the two states
belong to the same communicating class.
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Irreducible and reducible Markov chains

If a Markov chain has a single communicating class, it is called
irreducible. If it has multiple communicating classes, it is called
reducible.
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Recurrent and transient classes

Communicating classes with no transitions leading out of the class
are called recurrent classes, and states inside recurrent classes are
recurrent states.

Communicating classes with at least one transition leading out of
the class are called transient classes, and states inside transient
classes are transient states.
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Periodicity

Is this Markov chain irreducible?

A

C D

EB

Yes, it is. We can get from any state to any other state.

How many steps does it take to get from state A back to state A?
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Periodicity

A

C D

EB

We can get from state A back to state A in 3, 6, 9,. . . steps.

From state B we can get back to state B only in 3, 6, 9,. . . steps,
too.

And this holds for any state.
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Periodicity

A

C D

EB

If in an irreducible Markov chain we can only get from state A back
to state A in a number of steps divisible by some d > 1, then we
say that the Markov chain is periodic with period d . The value d is
the same for all other states too.

The above Markov chain is periodic with period 3.
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Periodicity
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In this Markov chain, we can get from state D back to state D 1
step, or 2 steps, or 3, etc. This is an aperiodic Markov chain.

(We can also think of it as a Markov chain with d = 1.)
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Periodicity
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Periodicity

A

C D

EB

In a periodic Markov chain, we can divide the states into d
periodicity classes. These are di�erent from communicating classes!
The above Markov chain is irreducible, it has one communicating
class (containing every state) and 3 periodicity classes.
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Example

In London, each rainy day is followed by a rainy day with probability
70% and by a sunny day with probability 30%. A sunny day is
followed by a rainy day with probability 50% and by a sunny day
with probability 50%. Assuming it is raining today, what is the
probability that it will be raining 2 days from now? And 3 days
from now?

(This is not a perfect model as weather typically has some long
term behaviour, but we will work with this now.)

There are 2 states: rainy and sunny. The probability transition
matrix is

P =

[
0.7 0.3
0.5 0.5

]
Today it is raining, so

v0 = ( 1 0 )
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Example

Then
v1 = v0 · P = ( 0.7 0.3 ).

v2 = v1 · P = ( 0.64 0.36 ).

v3 = v1 · P = ( 0.628 0.372 ).

They seem to converge. We aim to identify the limit next.
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Stationary vector

vst = ( x1 x2 . . . xk ) is a stationary vector or stationary distribution

for P if
vst · P = vst,

xi ≥ 0 (i = 1, . . . , k) and

x1 + · · ·+ xk = 1.

If we start the Markov chain from v0 = vst, then

v1 = vst · P = vst

and so on, so
vn = vst ∀n.

A Markov chain started from a stationary vector is called a
stationary Markov chain.
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Long-term behaviour

Theorem (Perron�Frobenius)

(a) There is always at least one stationary vector for any (�nite

state) Markov chain.

(b) If the Markov chain is irreducible, then vst is unique and its

elements are strictly positive.

(c) If the Markov chain is irreducible and aperiodic, then vst is
unique, its elements are strictly positive and

lim
n→∞

vn = vst

for any v0 initial vector.

No proof, but the stationary vector is the left-eigenvector
corresponding to the dominant eigenvalue of P which is 1.
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Example

If

P =

[
0.7 0.3
0.5 0.5

]
,

then for vst = ( x1 x2 ) the de�nition of the stationary vector gives

0.7x1 + 0.5x2 = x1

0.3x1 + 0.5x2 = x2

x1 + x2 = 1,

whose solution is x1 = 5/8 = 0.625 and x2 = 3/8 = 0.375, so

vst = ( 0.625 0.375 ).
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Computing the stationary distribution

In general, the stationary distribution can be computed by solving
the linear system of equations

vst · P = vst,

x1 + · · ·+ xk = 1.

The general method to do this is Gaussian elimination.

In certain special cases, the solution may be easier. We will address
this during problem solving.
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Long-term behaviour

So if the Markov chain is irreducible and aperiodic,

lim
n→∞

vn = vst.

The convergence is fast (exponentially fast � no proof); in general,
already for n ≥ 10,

vn ≈ vst

is a good approximation.

Also, part (c) of the Perron�Frobenius theorem is equivalent to

lim
n→∞

Pn =


vst
vst
...

vst

 .
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Also, part (c) of the Perron�Frobenius theorem is equivalent to

lim
n→∞

Pn =


vst
vst
...

vst
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Reducible Markov chains

A reducible Markov chain will eventually end up in one of the
recurrent classes.
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Reducible Markov chains

Each recurrent class can be regarded as a smaller irreducible
Markov chain.

A

C
D

E

B

F
G

recurrentrecurrent
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Reducible Markov chains

For a reducible Markov chain, there is a stationary vector for each
of the recurrent classes. For each class, the stationary vector is
unique.

Stationary vectors of the entire Markov chain are convex linear
combinations of the stationary vectors of the classes.

The probability of any transient state is 0 in any of the stationary
vectors.

Even for a reducible Markov chain, vn will converge to one of the
stationary vectors � but it can be random, which one.

We will focus mostly on irreducible Markov chains.
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Stationary vector interpretations

For an irreducible, aperiodic Markov chain,

vn → vst

for any v0. This means that in the long run, the Markov chain
�forgets� the initial state and will be very close to stationary. As a
consequence, in many scenarios where a Markov chain has been
running for a long time, the initial state is irrelevant, as the Markov
chain will be stationary anyway.

What about irreducible, periodic Markov chains?
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Periodic Markov chains

A

C D

EB

0.8

0.2

1

1

0.4

0.6

0.6

0.4

A possible realization: A, C, D, A, C, E, A, B, E, A, C, E, A, . . .

(Every third state is A, followed by either B or C, followed by either
D or E.)
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Periodic Markov chains

For an irreducible, periodic Markov chain, vst is unique. For the
above Markov chain,

vst =

(
1

3

1

15

4

15

14

75

11

75

)
.

If the period is d , vst assigns
1

d total weight to each of the
periodicity classes:

vst =

(
1

3

1

15

4

15︸ ︷︷ ︸
1
3

14

75

11

75︸ ︷︷ ︸
1
3

)
.
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Periodic Markov chains

However, a periodic Markov chain does not �forget� the initial state.

If the periodicity classes are denoted by 1, . . . , d , then if the
Markov chain started from class 1, then after nd steps, it can only
be in class 1 again. After nd + 1 steps, it can only be in class 2,
and so on.

The following is true: for large n, vn is approximately equal to vst
conditioned on being in the periodicity class where the Markov

chain can be in after n steps.

This conditional distribution can be computed by replacing all
elements of d × vst by zeros except for one periodicity class.

Stochastics Illés Horváth Markov Chains



Periodic Markov chains

However, a periodic Markov chain does not �forget� the initial state.

If the periodicity classes are denoted by 1, . . . , d , then if the
Markov chain started from class 1, then after nd steps, it can only
be in class 1 again. After nd + 1 steps, it can only be in class 2,
and so on.

The following is true: for large n, vn is approximately equal to vst
conditioned on being in the periodicity class where the Markov

chain can be in after n steps.

This conditional distribution can be computed by replacing all
elements of d × vst by zeros except for one periodicity class.

Stochastics Illés Horváth Markov Chains



Periodic Markov chains

However, a periodic Markov chain does not �forget� the initial state.

If the periodicity classes are denoted by 1, . . . , d , then if the
Markov chain started from class 1, then after nd steps, it can only
be in class 1 again. After nd + 1 steps, it can only be in class 2,
and so on.

The following is true: for large n, vn is approximately equal to vst
conditioned on being in the periodicity class where the Markov

chain can be in after n steps.

This conditional distribution can be computed by replacing all
elements of d × vst by zeros except for one periodicity class.

Stochastics Illés Horváth Markov Chains



Periodic Markov chains

However, a periodic Markov chain does not �forget� the initial state.

If the periodicity classes are denoted by 1, . . . , d , then if the
Markov chain started from class 1, then after nd steps, it can only
be in class 1 again. After nd + 1 steps, it can only be in class 2,
and so on.

The following is true: for large n, vn is approximately equal to vst
conditioned on being in the periodicity class where the Markov

chain can be in after n steps.

This conditional distribution can be computed by replacing all
elements of d × vst by zeros except for one periodicity class.

Stochastics Illés Horváth Markov Chains



Periodic Markov chains

For the previous periodic Markov chain example with period 3, we
have

vst =

(
1

3

1

15

4

15

14

75

11

75

)
.

If the Markov chain started from state 1, then after 3n steps, it can
only be in class 1, and so

v3n ≈ 3 ·

 1

3

0

�
��
1

15

0

�
��
4

15

0

�
��
14

75

0

�
��
11

75

 = ( 1 0 0 0 0 ).

After 3n + 1 steps, it can only be in class 2, so

v3n+1 ≈ 3 ·

 0

�
��
1

3

1

15

4

15

0

�
��
14

75

0

�
��
11

75

 = ( 0
1

5

4

5
0 0 ).
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Periodic Markov chains

And after 3n + 2 steps, it can only be in class 3, so

v3n+2 ≈ 3 ·

 0

�
��
1

3

0

�
��
1

15

0

�
��
4

15

14

75

11

75

 = ( 0 0 0
14

25

11

25
).

If the Markov chain started from class 2, then after 3n steps, it can
only be in class 2 again, so in this case,

v3n ≈ 3 ·

 0

�
��
1

3

1

15

4

15

0

�
��
14

75

0

�
��
11

75

 = ( 0
1

5

4

5
0 0 ).

Similarly,

v3n+1 ≈ 3 ·

 0

�
��
1

3

0

�
��
1

15

0

�
��
4

15

14

75

11

75

 = ( 0 0 0
14

25

11

25
),

etc.; the approximations are shifted according to the initial class.
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Stationary vector interpretations

What else does the stationary vector tell? Use the notation

vst = ( x1 x2 . . . xk ).

Lemma

For an irreducible Markov chain, the ratio of time spent at state i
in the long run is xi .

Lemma

For an irreducible Markov chain, the average number of steps taken

between two visits to state i is 1

xi
.

Both lemmas are valid for both periodic and aperiodic Markov
chains.
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Stationary vector interpretations

For the London weather example, let us denote the states as 1:
rainy, 2: sunny. Then a possible realization is

1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, . . .

The �rst lemma states that the ratio of 1's, that is, the ratio of
rainy days in the long run will be x1 = 0.625 = 62.5% of the total
days, while the ratio of sunny days will be x2 = 0.375 = 37.5%.

The second lemma states that the average number of steps between
consecutive 1's, that is, the average number of days between
consecutive rainy days, is 1

x1
= 1

0.625 = 1.6, and the average
number of steps between consecutive 2's (or the average number of
days between consecutive sunny days) is 1

x2
= 1

0.375 ≈ 2.667.
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Ergodic theorem

The next theorem is essentially the law of large numbers for
irreducible Markov chains. Let the states of the MC be {1, . . . , k}.

Theorem (Ergodic theorem)

Denote the realization of a Markov chain by the sequence of states

X1,X2, . . .

If the Markov chain is irreducible, then for any function f given on

the states,

lim
n→∞

f (X1) + · · ·+ f (Xn)

n
= Est(f ),

where

Est(f ) = x1f (1) + · · ·+ xk f (k),

where

vst = ( x1 . . . xk ).
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Ergodic theorem

An ice cream seller in London is selling on average 800 pounds of
ice cream per day on a sunny day, but only 120 pounds on average
on a rainy day. What is his long term average daily income?

Denoting the states of the Markov chain with 1: rainy and 2 sunny,
de�ne the function f to be

f (1) = 120, f (2) = 800.

Then the ergodic theorem states that the long term average daily
income is

Est(f ) = x1f (1) + x2f (2) = 0.625 · 120 + 0.375 · 800 = 375

(pounds per day).
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Central limit theorem for Markov chains

The ergodic theorem is essentially the law of large numbers for
Markov chains.

So does the central limit theorem hold, too?

Actually it does! That is,

lim
n→∞

P
(
f (X1) + · · ·+ f (Xn)− n · Est(f )

σ(f )
√
n

< x

)
= Φ(x) ∀x ∈ R.

However, there is one di�culty: the value of σ(f ) is di�cult to
compute.

Overall, the Markov chain CLT is not very practical and we are not
going to use it.
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Summary

There is always at least one vst.

For an irreducible Markov chain, vst = (x1 . . . xk) is unique
and xi > 0 ∀i .
A reducible Markov chain will eventually end up in one the
recurrent classes, which can be viewed as a smaller Markov
chain itself.

For an irreducible, aperiodic Markov chain, vn → vst rapidly.

For an irreducible, periodic Markov chain, vn changes
periodically, and can be approximated by vst conditioned on
the corresponding periodicity class.

For irreducible Markov chains, the long term average ratio of
time spent in state i is xi , and the average number of steps
spent between returns to state i is 1

xi
.

Ergodic theorem: the long term average of functions converges
to Est(f ), the stationary expected value of the function.
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In�nite state space

For Markov chains in an in�nite state space, a wide variety of
behaviour is possible.

There are Markov chains with a single vst and vn → vst for any
v0; essentially, all theorems for �nite state space Markov chains
are valid. These are sometimes called stable Markov chains.

There are Markov chains with no vst (all states are transient).

There are Markov chains with in�nitely many vst's where vn
might be divergent for some choices of v0.

Apart from transient and recurrent states, there may be null
recurrent states, at which the Markov chain returns in�nitely
many times, but the expected number of steps between two
returns is in�nite.

In general, spectral properties of the generator may help decide
which of the above cases holds.

We will discuss a few in�nite state space Markov chains - for
continuous time Markov chains.
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Problem 1

A drunk man is walking around in a small town. The map of the
town is the following:

A B

CD

Whenever the man arrives at any of the corners (A, B, C or D), he
will choose his next destination randomly from among the streets
available, except the street where he just arrived from.
Is the sequence of corners he visits a Markov chain? If not, propose
a Markov chain that describes the situation.
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Problem 1

Solution.
If we only know that right now he is in corner B, it does not fully
describe where he can go next: if he arrived from A to B in the
previous step, then he can go to C or D next, but if he arrived from
C, he can go to A or B next.

If we include the previous corner in the state too, then it will be a
Markov chain. The states are AB, AD, BA, BC, BD, CB, CD, DA,
DB, DC. For example, AB means that right now he is in B, coming
from A in the previous step. From state AB, the Markov chain can
transition to either BD or BC with probability 1/2 each.
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Problem 1

The graph of the entire Markov chain:

AB

AD

BC

BD BA
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Problem 2

Electric Ltd. takes two types of contract jobs: A and B. A type A
job lasts for one month and their income from it is 1.4 million HUF,
while a type B job lasts for 2 months and their income is 2.7 million
HUF. At the beginning of each month, they are open to new
contract o�ers unless they are in the middle of a type B job.
At the beginning of each month, they will receive a contract o�er
for a type B job with 60% probability, while they will receive a
contract o�er for a type A job with 50% probability (independently
from type B o�ers). If they receive both types of o�ers, they
accept a type A o�er.
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Problem 2

(a) Model the monthly activity of Electric Ltd. with a
Markov-chain. What are the states? What is the transition
matrix? Is the Markov chain irreducible? Is it aperiodic?

(b) Calculate the stationary distribution. Based on the stationary
distribution, calculate the long-term average monthly income.

(c) What is the average amount of time between consecutive idle
months?

(d) They are reconsidering their policy to accept a type A o�er
when both are available. What is their long-term average
monthly income in case they prefer a type B o�er when both
A and B are available?
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Problem 2

To determine the states, let's look at the possible activities of
Electric Ltd. They may be doing a type A job, or a type B job, or
they can be idle, which will be denoted by 0.

A possible realization is:

A, B, B, 0, B, B, A, 0, A, A, B, B, B, B, A, B, B,. . .

Is this a Markov chain?

No, it is not! The issue is that if right now they are doing a type B
job, what can happen next month depends on whether it's the �rst
half or second half of a type B job: from the �rst half of a type B
job, they will always go to the second half, while after the second
half of a type B job, in the next month they can be idle, or do a
type A job, or start another type B job.
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Problem 2

A possible solution is to consider the �rst and second month of a
type B job as separate states B1 and B2. Then the previous
realization looks like this:

A, B1, B2, 0, B1, B2, A, 0, A, A, B1, B2, B1, B2, A, B1, B2,. . .

This is now a Markov chain on the states A, B1, B2, 0. Let's
calculate the transition probabilities from state A. They will �nish
the type A job at the end of the month, so for the next month,
they will be open to contract o�ers.

If they receive an o�er for a type A job, they will take it; this
has probability 0.5.

They will start a type B job if they receive a type B o�er and
do not receive a type A o�er; this has probability
0.6 · (1− 0.5) = 0.3.

They will be idle if they do not receive either a type A or a
type B o�er; this has probability (1− 0.5)(1− 0.6) = 0.2.
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Problem 2

The probability transition matrix is

A B1 B2 0

A 0.5 0.3 0 0.2
B1 0 0 1 0
B2 0.5 0.3 0 0.2
0 0.5 0.3 0 0.2

The Markov chain may get from any state to any state, so it is
irreducible.

Quick rule of thumb to help decide periodicity: if the matrix P has
at least one strictly positive element in the diagonal (which
corresponds to a loop), then the Markov chain must be aperiodic.

The converse is not true.

Stochastics Illés Horváth Markov Chains



Problem 2

The probability transition matrix is

A B1 B2 0

A 0.5 0.3 0 0.2
B1 0 0 1 0
B2 0.5 0.3 0 0.2
0 0.5 0.3 0 0.2

The Markov chain may get from any state to any state, so it is
irreducible.

Quick rule of thumb to help decide periodicity: if the matrix P has
at least one strictly positive element in the diagonal (which
corresponds to a loop), then the Markov chain must be aperiodic.

The converse is not true.

Stochastics Illés Horváth Markov Chains



Problem 2

The probability transition matrix is

A B1 B2 0

A 0.5 0.3 0 0.2
B1 0 0 1 0
B2 0.5 0.3 0 0.2
0 0.5 0.3 0 0.2

The Markov chain may get from any state to any state, so it is
irreducible.

Quick rule of thumb to help decide periodicity: if the matrix P has
at least one strictly positive element in the diagonal (which
corresponds to a loop), then the Markov chain must be aperiodic.

The converse is not true.

Stochastics Illés Horváth Markov Chains



Problem 2

The stationary distribution vst = ( x1 x2 x3 x4 ) can be computed
from

vst · P = vst,

x1 + x2 + x3 + x4 = 1,

from which

0.5x1 + 0.5x2 + 0.5x4 = x1,

0.3x1 + 0.3x2 + 0.3x4 = x2,

x2 = x3,

0.2x1 + 0.2x2 + 0.2x4 = x4,

x1 + x2 + x3 + x4 = 1.
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Problem 2

From the �rst four equations, the ratios of x1, x2, x3, x4 relative to
each other can be expressed directly as

x1 : x2 : x3 : x4 = 5 : 3 : 3 : 2,

and accordingly,

vst =

(
5

13

3

13

3

13

2

13

)
.

Their long-term average monthly income can be computed from
the ergodic theorem. Note that to apply the ergodic theorem, we
need to assign a value to each state. For A, their income is 1.4
(million HUF), for state 0, their income is 0, and for states B1 and
B2, we need to split the 2.7.
If we split it evenly, then their long-term average monthly income is

5

13
· 1.4 +

3

13
· 1.35 +

3

13
· 1.35 +

2

13
· 0 ≈ 1.16.
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Problem 2

If we split the income for a type B job in some other way, for
example 2.7 + 0, then their long-term average monthly income is

5

13
· 1.4 +

3

13
· 2.7 +

3

13
· 0 +

2

13
· 0 ≈ 1.16.

In fact, the long-term average monthly income will be the same for
any split due to x2 = x3.

Since the stationary probability of an idle month is x4 = 2

13
, the

average amount of time between two consecutive idle months is

1

2/13
= 6.5

months.
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Problem 2

If they decide to prefer type B jobs instead of type A jobs, then the
transition probabilities are di�erent.

They will start a type A job if they receive a type A o�er and
do not receive a type B o�er; this has probability
0.5 · (1− 0.6) = 0.2.

If they receive an o�er for a type B job, they will take it; this
has probability 0.6.

They will be idle if they do not receive either a type A or a
type B o�er; this has probability (1− 0.5)(1− 0.6) = 0.2.

Accordingly,

P =


0.2 0.6 0 0.2
0 0 1 0
0.2 0.6 0 0.2
0.2 0.6 0 0.2

 .
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Problem 2

The stationary distribution is di�erent as well:

x1 : x2 : x3 : x4 = 2 : 6 : 6 : 2,

and accordingly,

vst =

(
2

16

6

16

6

16

2

16

)
,

and according to the ergodic theorem, their long-term average
monthly income is

2

16
· 1.4 +

6

16
· 1.35 +

6

16
· 1.35 +

2

16
· 0 ≈ 1.19.

This is actually higher than when they prefer type A jobs, despite
the fact that a type A job o�ers more income per month than a
type B job. The reason is that the probability of idle months is now
signi�cantly lower.
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Problem 4

A football association has 3 leagues. Pegleg FC starts from league
3. If they are currently in league 3, they get promoted with
probability 2/3 for the next season. From league 2, they get
promoted with probability 1/2 for the next season and get relegated
with probability 1/6 (otherwise, they remain in the current league).
From league 1, they get relegated with probability 1/2.

(a) Calculate the stationary distribution.

(b) What is the probability that 10 years from now, they will play
in league 1?

(c) What is the probability that 10 years from now, they will get
relegated at the end of the season?

(d) What is the long term ratio of years they spend in league 2?

(e) Calculate the average number of years that pass between 2
consecutive appearances in league 3.
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Problem 4

Solution. The states are 1, 2 and 3: state 1 corresponds to the
lowest division, so division 3, state 2 is league 2 and state 3 is
league 1. Then

P =

 1/3 2/3 0
1/6 1/3 1/2
0 1/2 1/2

 ,

and the stationary vector vst = ( x1 x2 x3 ) can be computed from

1

3
x1 +

1

6
x2 = x1

2

3
x1 +

1

3
x2 +

1

2
x3 = x2

1

2
x2 +

1

2
x3 = x3

x1 + x2 + x3 = 1
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Problem 4

From the third equation, x2 = x3, and from the �rst equation,
x2 = 4x1, so we have x1 : x2 : x3 = 1 : 4 : 4 and

vst =

(
1

9

4

9

4

9

)
.

This is an irreducible and aperiodic Markov chain, so vn ≈ vst for
large n. 10 years is a long time, so the probability that they will
play in league 1 can be approximated by x3 = 4/9.

Let A denote the event that they get relegated at the end of the
season 10 seasons from now. Its probability depends on the league
they are in 10 years from now, so let B3,B2 and B1 denote the
events that they are in league 1, 2 or 3 respectively 10 years from
now. Then according to total probability:

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + P(A|B3)P(B3)

≈ 0 · 1
9

+
1

6
· 4
9

+
1

2
· 4
9
≈ 0.296.
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Problem 4

The long term average ratio of the time they spend in league 2 is
x2 = 4

9
.

The average number of years that pass between 2 consecutive
appearances in league 3 is 1

x1
= 9.
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Problem 6

A knight is moving around the squares of the chessboard randomly;
the next step is taken uniformly among all possible steps from the
current square.

(a) Argue that the position of the knight is a Markov chain.

(b) Is the Markov chain irreducible or not? Is it aperiodic or
periodic?

(c) Calculate the stationary distribution.

(d) Compute the conditional probability that the knight will be on
A1 after 1000 steps, assuming it is on A1 now.

(e) Compute the conditional probability that the knight will be on
A2 after 1000 steps, assuming it is on A1 now.

(f) Compute the conditional probability that the knight will be on
A1 after 1001 steps, assuming it is on A1 now.

(g) Compute the conditional probability that the knight will be on
A2 after 1001 steps, assuming it is on A1 now.
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Problem 6

Solution. The possible moves of the knight:

From every square, it can move to 8 other squares, except near the
border of the chessboard, where there are fewer target squares.
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Problem 6

Since it selects randomly in each step, depending only on the
current square, this is a Markov chain. It has 64 states (the squares
of the chessboard).

The Markov chain is irreducible since the knight can get from
anywhere to anywhere; this can be seen e.g. using the following
3-step combination that will move the knight to an adjacent
square. It can be repeated to move the knight around the board.

2
1

3
0

The Markov chain is periodic with period 2 since the knight always
moves from a light square to a dark square and vice versa.
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Problem 6

The transition probability matrix is a 64× 64 matrix that has
element Pi ,j = 1

di
if di denotes the number of possible target

squares from square i . The values of di for each square is

2

2

2

23
3

3
3

3
3

3
3

4
4

4

4
4

4 4
4

4
4

4

46
6

6
66

6

6
6

4 4

4
4

4
4

4 4

8
8

8

8
8

8

8
8

8

8
8

8

8
8
88

6 6

6
6

6
6

6 6
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Problem 6

These actually help with computing vst; for the vector v whose
elements are di for each state, we have

(v · P)i =
∑
j

vjPji =
∑

j :j neighbor of i

dj ·
1

dj
= di = vi ,

which means v satis�es v · P = v , and thus vst = 1

336
v since the

sum of all di 's is 336.

Accordingly, the probability

P(A1 after 1000 steps|A1 initially)

can be computed the following way: �rst we check whether it is
possible to be on A1 again (due to periodicity). It is possible
because 1000 is even. Then the probability is approximately the
period (2) multiplied by the stationary probability of the square A1,
which is 4

336
.
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Problem 6

For the probability

P(A2 after 1000 steps|A1 initially),

we once again �rst check whether it is possible to be on A2 after
1000 steps, starting from A1.

This is not possible since 1000 is
even, A1 is white and A2 is black. So

P(A2 after 1000 steps|A1 initially) = 0.
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Problem 7

John has liability insurance for his car. The insurance company puts
drivers into 4 categories: 1, 2, 3, 4. If a driver does not cause any
accidents for an entire year, he moves up by 1 category (if he was
in category 4, he stays there). If a driver causes a major accident,
next year he goes into category 1. If a driver causes a minor
accident, but no major accidents during a year, next year he moves
down by 1 category (if he was in category 1, he stays there).
John causes a major accident during a year with probability 1/12,
and the probability that he causes a minor accident but no major
accidents during a year is 1/4.
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Problem 7

(a) Model this process with a Markov chain. What are the states?
Calculate the transition matrix. Is the Markov chain
irreducible? Is it aperiodic?

(b) What is the conditional probability that John will be in
category 2 two years from now, assuming that now he is in
category 4?

(c) What is the probability that he will be in category 2 ten years
from now?

(d) In the long run, how often does he move from category 3 to
category 4 on average?

(e) For each category, the annual cost is respectively 120000,
72000, 54000, 36000 HUF. What is the long-term average
annual cost paid by John?

Stochastics Illés Horváth Markov Chains



Problem 7

Solution.

(a) States are 1, 2, 3, 4 according to the categories.

P =


1/3 2/3 0 0
1/3 0 2/3 0
1/12 1/4 0 2/3
1/12 0 1/4 2/3

 .
The Markov chain is irreducible and aperiodic (rule of thumb:
if there is a positive element in the diagonal of P , then it must
be aperiodic).
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Problem 7

(b) If he is in category 4 now, then

v0 = ( 0 0 0 1 ),

and

v1 = v0P =

(
1

12
0
1

4

2

3

)
and

v2 = v1P =

(
5

48

17

144

1

6

11

18

)
,

so the probability that he will be in category 2 is 17

144
≈ 0.118.

Stochastics Illés Horváth Markov Chains



Problem 7

(c) 10 years is a long time, so v10 ≈ vst.

vst = (x1 x2 x3 x4) can be computed from

vst = vstP,

x1 + x2 + x3 + x4 = 1.

The result is

vst =

(
1

6

1

6

2

9

4

9

)
,

so the probability that he will be in category 2 ten years from
now is 1

6
.
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Problem 7

(d) In the long run, the probability that he is in category 3 in a
given year is x3 = 2

9
, and

P(he moves from 3 to 4) =

P(he moves from 3 to 4|he is in 3)P(he is in 3) =

2

3
· 2
9

=
4

27
.

(e) Due to the ergodic theorem, the long term average fee he pays
is

120000 · 1
6

+ 72000 · 1
6

+ 54000 · 2
9

+ 36000 · 4
9

= 60000

HUF per year.
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